Anisotropic diffusion in a finite cylinder, with geochemical applications

نویسندگان

  • E. Bruce Watson
  • Keith H. Wanser
  • Kenneth A. Farley
چکیده

Atomic diffusion in minerals may not be well represented by solutions to the diffusion equation for a sphere with a singlevalued diffusivity, either because they have platy or elongated habits or because the energetics of diffusion is sensitive to crystallographic direction. In many cases, a cylinder having characteristic radial and axial diffusivities is arguably a better model, but rigorous solutions to the anisotropic diffusion equation for a finite cylinder have not been available. Here we develop general analytical solutions that capture both the internal distribution of diffusant as a function of time, C(r, z, t), and the fraction, F, of diffusant lost during a specified thermal history. These solutions are shown to conform with existing analytical expressions for limiting cases of diffusion in a slab or infinite cylinder. We present, in addition, a simple numerical (finite difference) approach that not only reproduces the results of our analytical expressions but also enables us to move beyond some of the limitations of the equations to simulate complex natural scenarios involving non-zero and time-dependent boundary conditions, arbitrary initial distribution of diffusant within the cylinder and simultaneous diffusion and radiogenic ingrowth. The complementary nature of the two approaches is emphasized and several illustrative applications to ‘real-world’ problems are described, including noble-gas thermochronometry and halogen–hydroxyl interdiffusion in apatite. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoelastic Analysis of Functionally Graded Hollow Cylinder Subjected to Uniform Temperature Field

This paper deals with the determination of displacement function and thermal stresses of a finite length isotropic functionally graded hollow cylinder subjected to uniform temperature field. The solution of the governing thermoelastic equation is obtained, as suggested by Spencer et al. for anisotropic laminates.  Numerical calculations are also carried out for FGM (Functionally graded material...

متن کامل

A Numerical Study on the Aeroacoustic Radiation from a Finite Length Rotating Cylinder

Rotating cylinders have wide applications in different areas, especially the aerodynamic area. However, the acoustic behaviors of these components have not been widely studied. The generating noise from a spinning cylinder is mainly due to the detached vortices from the leeward of the body. In this study, the large eddy simulation technique is used to simulate the flow field over a three-dimens...

متن کامل

Confinement without boundaries: anisotropic diffusion on the surface of a cylinder.

Densely packed systems of thermal particles in curved geometries are frequently encountered in biological and microfluidic systems. In 2D systems, at sufficiently high surface coverage, diffusive motion is widely known to be strongly affected by physical confinement, e.g., by the walls. In this work, we explore the effects of confinement by shape, not rigid boundaries, on the diffusion of discs...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

-Stable Nonstandard Finite Differences for Anisotropic Diffusion

Anisotropic diffusion filters with a diffusion tensor are successfully used in many image processing and computer vision applications, ranging from image denoising over compression to optic flow computation. However, finding adequate numerical schemes is difficult: Implementations may suffer from dissipative artifacts, poor approximation of rotation invariance, and they may lack provable stabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009